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1 Introduction

How do we generate samples from a probability distribution whose analytical
form is potentially unknown? As an example, this question surfaces in many
cases in Posterior density approximation in Bayesian Inference.

Even for the cases in which the analytical form of the distribution is known-
the exponential distribution, for example - how is the distribution sampled? The
aim of this article Series is to provide an overview of three popular sampling
methods for generating samples for known/unknown distributions:

• Inverse Sampling

• Accept-Reject Sampling

• Markov Chain Monte Carlo Methods

The reader should also note that to approximate a posterior distribution, an-
other class of methods called Variational Inference also exists. Variational Auto-
Encoders for example, fall under this category and unlike sampling, they esti-
mate the posterior using a parametrized density function and find the parame-
ters through optimization.

2 Markov Chain Monte Carlo (MCMC)

At the outset, the main idea of MCMC is to construct a Markov Chain such
that its steady-state distribution is the probability distribution we would like to
sample from. Sections 2.1 and 2.2 motivate this method listing a few theorems
that guarantee this steady-state distribution. Section 2.3 applies the theory
to a neat algorithm called as the Metropolis Algorithm that, under certain
conditions, constructs a Markov chain for any steady-state distribution with
the guarantee of its existence. A more general version called as the Metropolis-
Hanstings algorithm is left for future discussion.
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2.1 Markov Chains

A Markov chain is characterized by a set of n states S = {s0, s1, s2 . . . sn} and
transition probabilities taking us from one state to the other. We initially start
at some state si and at each progressing time step, move from one state to the
other based on the tranisition probabilities. That means we have a sequence
of random variables denoted by S: X0, X1, . . . X∞ where the subscript of X
denotes its time-step.

The transition probability pij = P (Xt+1 = sj |Xt = si) denotes the proba-
bility of going to the state sj in the next time step if we are in si in the current
time step.

At any given time step we can define the state probability vector as the
following column vector:

vt = [P (Xt = s0) P (Xt = s1) P (Xt = s2) . . . P (Xt = sn)]
T

This vector gives the probability distribution for the random variable Xt for all
the states at time t.

So this random vector takes various values for each time step. It would
an interesting situation if v∞ was a constant vector. That would mean that
eventually, this distribution is going to stabilize to some stationary value and
that is the distribution of our interest. In the context of MCMC methods,
we are going to construct a Markov chain whose stationary distribution is the
probability distribution that we would like to sample from.
How do we find this distribution for a given Markov Chain? Is it unique?
Does it even exist? Before we answer these questions, we define the transition
probability matrix:

Pr =


p00 p01 . . . p0n
p10 p11 . . . p1n
...

...
pn0 pn1 . . . pnn


The transition probabilities should add upto 1 and in Pr, this means that each
row sums up to 1. We define P = PrT and in this matrix satisfies all the
conditions of a Markov Matrix:

• Each element of the matrix ≥ 0

• Each column sums to 1.

We can then write the following equation based on law of total probability:

vt+1 = Pv (1)

The steady state vector v∞, if it exists satisfies the following equation:

v∞ = Pv∞ (2)
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The key caveat here is that such a vector needs to exist for P as t → ∞ and
does not depend on any starting distribution v0.

We can also define the notion of a stationary vector π:

Pπ = π

It is important to note the difference between a steady-state distribution and
stationary distribution: A stationary distribution is one, if the chain arrives at,
stays the same forever. However, the chain may or may not arrive at it.
On the other hand, a steady-state distribution is the stationary distribution that
a Markov chain is guaranteed to arrive at eventually, no matter what starting
state we begin with.

From (2), we can see that v∞ is the eigenvector of P with eigenvalue λ = 1.
Does P have an eigenvalue of 1 in the first place? The answer is yes!

Theorem 2.1. λ = 1 is the eigenvalue of any Markov Matrix P

Proof. The characteristic equation for λ = 1 is:

|P− λI| = 0 (3)

For λ = 1, we see that each column of P− I sums to 0, instead of 1.That is, the
sum of all rows is zero row, which means the rows are not linearly independent.
Therefore, the matrix P− I is singular and its determinant 0.

What can we say about other values of λ in (3)?

Theorem 2.2. Any eigenvalue λ of P satisfies |λ| ≤ 1 i.e. 1 is the spectral
radius of P.

Proof. Let v ∈ C be the corresponding eigenvector of λ. Also, let j, k such that
the magnitude of the jth component of v, |vj | ≤ |vk|∀j ∈ {1 . . . n}. Then,

|λvk| = |[Pv]k| (λ,v) are eigen value-vector pair

= |
∑
j

pkjvj |

≤
∑
j

pkj |vj |

≤
∑
j

pkj |vk|

= |vk|

⇒ |λ| ≤ 1
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The role of these eigenvalues becomes clear when P is diagonalizable (i.e.
it has all distinct eigenvalues or when geometric multiplicity of eigenvectors is
same as algebraic multiplicity of the eigenvalue). In such a case P = SΛS−1.
More explicityly, we can write this as :

P =


...

...
...

w1 w2 . . . wn

...
...

...


︸ ︷︷ ︸

S


λ1

λ2

. . .

λn


︸ ︷︷ ︸

Λ


. . . uT

1 . . .
. . . uT

2 . . .

. . .
... . . .

. . . uT
n . . .


︸ ︷︷ ︸

S−1

(4)

Here the set {w1, . . . ,wn} which are the eigenvectors of P are the column vec-
tors of matrix S and {uT

1 , . . . ,u
T
n } are row vectors of matrix S−1 Note that

these sets need not be orthonormal since that is possible only when P is sym-
metric. The set {λ1, . . . , λn} are the eigenvalues of P written in decreasing order
of magnitude.
When we write (1) recursively starting with v0 at t = 0, we have :

vt+1 = Ptv0

The eigenvectors of Pt are the same as that of P and the eigenvalues are the set
{λt

1, . . . λ
t
n}. Using this fact and expanding the equation in (4), we have vt+1

expanded with eigenvectors as basis:

vt+1 = λt
1(u

T
1 v0)w1 + λt

2(u
T
2 v0)w2 + · · ·+ λt

n(u
T
nv0)wn (5)

As t → ∞, λ’s are exponentiated. This is where Theorem 2.2 converges the sum
to a finite value with |λi| ≤ 1∀i ∈ {1, . . . , n}. We however are not just interested
in finite, we are also interested in a stationary and unique distribution in v∞.
Equation (5) however does not immediately guarantee that. If |λj | < 1∀j ̸= 1,
then we only have the first term of (5) giving us a unique (upto a scaling factor)
steady state (t → ∞) distribution.

However, if more than one eigenvalue has a magnitude equal to 1, we have
a resulting linear combination whose coefficients are dependent on initial state
and therefore we may not have a unique distribution at t → ∞. Moreover, the
distribution in such a case might also not be stationary if we have λ = −1. In
such a case we may find a solution that oscillates based on if t is even or odd.

For example the matrix A =

[
0 1
1 0

]
has eigenvalues λ1 = 1, λ2 = −1. The

corresponding eigenvectors are w1 = [1, 1]T and w2 = [−1, 1]T and substituting
these values in equation (5) shows us the non-stationary oscillatory behaviour.

For which A, can we guarantee a unique steady state distribution? The fol-
lowing theorem lays a foundation for when we shall not have a repeated λ = 1:
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Perron-Frobenius Theorem For a positive matrix A > 0 i.e. all its
entries are strictly greater than 0, there exists a positive eigenvalue r which is
the spectral radius and whose algebraic and geometric multiplicity is 1. The
corresponding eigenvector is positive.

Proof. Todo

We apply this theorem to Markov Matrices, when r = 1.

2.2 The Aperiodic Irreducible case

When the transition matrix P has all positive entries, multiplication with itself
will result in another positive matrix. Therefore, at any given time t, we have
that Pt is a positive matrix and therefore has an algebraic and geometric mul-
tiplicity of 1 for λ = 1 from the theorem Perron-Frobenius Theorem .
Such a transition matrix would mean that each state in the Markov chain can
transition to any other state with some probability immediately. A more gen-
eral case would be that in the Markov chain, starting from a given state, we can
transition to any other state eventually i.e at a future time-step which may not
be the immediate next step. Such a chain is graph that is strongly connected
i.e. there exists a directed path between any two given nodes. Such a Markov
chain is called irreducible. Note that the transition matrix of such a chain
may contain some entries which are zeroes. Formally, a Markov Chain is said
to be irreducible if: ∑

t≥0

P (Xt = j|X0 = i) > 0

Theorem 2.3. For an irreducible Markov chain, there exists a unique station-
ary distribution.

Proof. Todo

We need another condition called aperiodicity for this unique stationary
distribution to also be the steady state distribution. A markov chain is said to
be periodic if a state can only be visited at timesteps which are not multiples
of 1. So for it to be periodic, we have:

gcd({t|t ≥ 0, P (Xt = j|X0 = i) > 0}) ̸= 1

where gcd is greatest common divisor and if it doesn not statisfy the above
condition, it is aperiodic.

Theorem 2.4. For a finite state, irreducible, aperiodic Markov Chain, there
exists a unique stationary distribution which is also the steady-state distribution.

Proof. Todo

Proof Sketch We require the additional aperiodicity condition to show
that after a certain number of time steps n, the transition matrix Pn becomes
strictly positive i.e. Pn > 0. We can then use the Perron-Frobenius Theorem
to complete the proof.
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2.3 Metropolis Algorithm

So far, we have discussed what kind of Markov Chains guarantee a steady-
state distribution. In this section, we discuss about an algorithm to explicitly
construct a Markov chain whose steady-state distribution is of our interest. We
assume to following about our target distribution π, with support S:

• We can compute the ratio π(i)
π(j) for i, j ∈ S.

• S is finite.

The second condition is important since Theorem 2.4 requires the same. We
shall construct a markov chain whose state space is given by the elements of
S and whose transition probabilities of the matrix Pr (the rows of this matrix
sum to 1) by:

Pr(i, j) =


0 i, j are not neighbors
1
d min(1, π(j)

π(i) ) i, j are neighbors

1−
∑

k ̸=i Pr(i, k) i = j

(6)

Here d is any positive number that is strictly greater than the maximum out
degree of the graph. We claim the following:

Theorem 2.5. The Markov Chain with the transition probabilities defined in
Equation (6) with a strongly connected state space given by the suport S is
aperiodic, irreducible and has the stationary, steady state distribution π.

Proof. If a chain has self-loops for all nodes, it is aperiodic. So we show that
Pr(i, i) > 0. Let the ith node have a degree di.∑

k ̸=i

Pr(i, k) =
∑
k ̸=i

1

d
min(1,

π(k)

π(i)
)

≤
∑
k ̸=i

1

d
.1

=
di
d

< 1

⇒ 1−
∑
k ̸=i

Pr(i, k) > 0

It is irreducible since the graph is strongly connected. It remains to show
that π is indeed the stationary distribution of the chain.To show πTPr = πT ,
we define the following sets: N+(j) = {i|π(i) ≤ π(j) , j is a neigbor of j} and
N−(j) = {i|π(i) > π(j) , j is a neigbor of j}. The jth entry (πTP )j is:∑

l∈N−(j)

π(l)Pr(l, j) +
∑

i∈N+(j)

π(i)Pr(i, j) + π(j)
(
1−

∑
r ̸=j

Pr(j, r)
)
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Using the definition of the sets above and the definition of the transition matrix
for each case, we have:

(πTPr)j =
∑

l∈N−(j)

π(l)
π(j)

d.π(l)
+

∑
i∈N+(j)

π(i)
1

d
+ π(j)

(
1−

∑
r∈N−(j)

1

d
−

∑
r∈N+(j)

π(r)

d.π(j)

)
Cancelling the terms, we see:

(πTPr)j = π(j)

which is the condition for stationarity. Since the stationary distribution is
unique and steady state for the given chain, we prove the theorem.
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